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ABSTRACT 

Autoencoders (AE) are a family of neural networks for which the input is the same as the output. They work by 

compressing the input into a latent-space representation and then reconstructing the output from this representation. 

The aim of an Autoencoder is to learn a representation (encoding) for a set of data, typically for dimensionality 

reduction, by training the network to ignore signal “noise”. In this paper De-noising Autoencoder is implemented 

by proposing a novel approach on MNIST handwritten digits. This model is validated through training and 

validation losses, and observing the reconstructed test images when comparing to the original images. The 

proposed model is found to be working very well. 

 

1. INTRODUCTION 
Autoencoder [1] is a type of neural network where the output layer has the same dimensionality as the input layer. 

In simpler words, the number of output units in the output layer is equal to the number of input units in the input 

layer. An autoencoder replicates the data from the input to the output in an unsupervised manner and is therefore 

sometimes referred to as a replicator neural network. "Autoencoding" is a data compression algorithm where the 
compression and decompression functions are 1) data-specific, 2) lossy, and 3) learned automatically from 

examples rather than engineered by a human. The autoencoders reconstruct each dimension of the input by passing 

it through the network. It may seem trivial to use a neural network for the purpose of replicating the input, but 

during the replication process, the size of the input is reduced into its smaller representation. The middle layers of 

the neural network have a fewer number of units [3] as compared to that of input or output layers. Therefore, the 

middle layers hold the reduced representation of the input. The output is reconstructed from this reduced 

representation of the input. Autoencoders are similar in spirit to dimensionality reduction techniques like principal 

component analysis. They create a space where the essential parts of the data are preserved, while non-essential 

(or noisy) parts are removed. 

 

Autoencoders architecture 

As depicted in the Figure 1, there are three components in an Autoencoder : Encoder, Code, Decoder.  
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Figure 1: Architecture of Autoencoder 

 

Encoder 

This component is a feedforward, fully connected neural network. Its functionality is to compress the input into a 

latent space representation, and encodes the input image into a compressed representation in a reduced dimension. 

Distorted version of the original image is obtained after compression.  
 

Code 

This part of the network contains the reduced representation of the input that is fed into the decoder.  

 

Decoder  

It is also a feedforward network and has a similar structure to the encoder. From the code this network reconstructs 

the input back to the original dimensions. First, the input goes through the encoder where it is compressed and 

stored in the layer called Code, then the decoder decompresses the original input from the code. 

 

The main objective of the autoencoder is to get an output identical to the input. The decoder architecture is the 

mirror image of the encoder, typically, but not a requirement. The dimensionality of the input and output must be 
the same is the only requirement.  

 

Some important varieties of Autoencoders are Convolutional Autoencoder, Denoising Autoencoder [1], 

Variational Autoencoder. Here in this research we have considered to implement De-noising autoencoder.  

 

Denoising autoencoder 

In this research Denoising Autoencoder is implemented using Tensorflow(Python) using MNIST handwritten 

digits. It is to learn a representation (latent space) that is robust to noise is the idea behind a Denosing Autoencoder 

[3]. We add noise to an image and then feed this noisy image as an input to our network. Here, The encoder part 

transforms the image into a different space that preserves the handwritten digits but removes the noise. The 

original image is 28 x 28 x 1 image, and the transformed image is 7 x 7 x 32. We can think of the 7 x 7 x 32 image 
as a 7 x 7 image with 32 color channels. The decoder part of the network then reconstructs the original image 

from this 7 x 7 x 32 image by removing the noise. During training, we define a loss (cost function) to minimize 

the difference between the reconstructed image and the original noise-free image, means we learn a 7 x 7 x 32 

space that is noise free.  
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Figure 2: Denoising Autoencoder 

 

2. IMPLEMENTATION OF DENOISING AUTOENCODER 
 

The network  

The images are matrices of size 28 x 28. We reshape the image to be of size 28 x 28 x 1, convert the resized image 

matrix to an array, rescale it between 0 and 1, and feed this as an input to the network. The encoder transforms 

the 28 x 28 x 1 image to a 7 x 7 x 32 image. You can think of this 7 x 7 x 32 image as a point in a 1568 (because 

7 x 7 x 32 = 1568) dimensional space. This 1568 dimensional space is called the bottleneck or the latent space. 

The architecture is graphically shown in Figure 3. The decoder does the exact opposite of an encoder; it transforms 

this 1568 dimensional vector back to a 28 x 28 x 1 image. We call this output image a “reconstruction” of the 

original image. The structure of the decoder is shown in Figure 4.  

 
Figure 3: Architecture of encoder model 
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Figure 4: Architecture of decoder model 

 

The following sections describe the implementation of Denoising Autoencoder using Tensorflow.  
 

Encoder  

There are 2 Convolutional layers and 2 max pooling layers. Both layer-1 and layer-2 of Convolution have 32-3 x 

3 filters. There are two max-pooling layers each of size 2 x 2.  

 

 
Figure 5: Encoder block diagram 

 

Decoder  

 
Figure 6: Decoder block diagram 

 

The decoder has two Conv2d_transpose layers, two Convolution layers, and one Sigmoid activation function. 

Conv2d_transpose is for upsampling which is opposite to the role of a convolution layer. The Conv2d_transpose 

layer upsamples the compressed image by two times each time we use it. Finally, we calculate the loss of the 

output using cross-entropy loss function and use Adam optimizer to optimize our loss function. 

 

USING Leaky ReLU INSTEAD of ReLU as ACTIVATION FUNCTION  

We want gradients to flow while we backpropagate through the network. We stack many layers in a system in 

which there are some neurons whose value drop to zero or become negative. Using a ReLU as an activation 

function clips the negative values to zero and in the backward pass, the gradients do not flow through those 

neurons where the values become zero. Because of this the weights do not get updated, and the network stops 

learning for those values. So using ReLU is not always a good idea. Therefore, we use a leaky ReLU which instead 

of clipping the negative values to zero, cuts them to a specific amount based on a hyper parameter alpha. This 

ensures that the network learns something even when the pixel value is below zero. 
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Load the data 

Once the architecture has been defined, we load the training and validation data. As shown below, Tensorflow 

allows to easily load the MNIST data. The training and testing data loaded is stored in 

variables train_imgs and test_imgs respectively. Since its an unsupervised task no need to care about the labels. 

# load mnist dataset 

(train_imgs, train_labels), (test_imgs, test_labels) = tf.keras.datasets.mnist.load_data() 

# fit image pixel values from 0 to 1 

train_imgs, test_imgs = train_imgs / 255.0, test_imgs / 255.0 

 

Data analysis  

Before training a neural network, it is always a good idea to do a sanity check on the data. The data consists of 
handwritten numbers ranging from 0 to 9, along with their ground truth labels. It has 55,000 train samples and 

10,000 test samples. Each sample is a 28×28 grayscale image.  

 

The data details 

# check data array shapes: 

print("Size of train images: {}, Number of train images: {}".format(train_imgs.shape[-2:], 

train_imgs.shape[0])) 

print("Size of test images: {}, Number of test images:  

{}".format(test_imgs.shape[-2:], test_imgs.shape[0])) 

 

The output is 

Size of train images: (28, 28), Number of train images: 60000 

Size of test images: (28, 28), Number of test images: 10000 

 
The visualization of train and test image examples 

# plot image example from training images 

 

plt.imshow(train_imgs[1], cmap='Greys') 

plt.show() 

# plot image example from test images 

plt.imshow(test_imgs[0], cmap='Greys') 

plt.show() 

plt.close() 

 

Output:  

 
Figure 7: Train and test MNIST images 
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Pre-processing data  

The images are greyscale and the pixel values range from 0 to 255. We apply following pre-processing to the data 

before feeding it to the network.  

 

1. Add a new dimension to the train and test images, which will be fed into the network. 

# prepare training reference images: add new dimension 

train_imgs_data = train_imgs[..., tf.newaxis]  

# prepare test reference images: add new dimension 

test_imgs_data = test_imgs[..., tf.newaxis] 

2. Add noise to both train and test images which we then feed into the network. Noise factor is a 

hyperparamter and can be tuned accordingly. 
# add noise to the images for train and test cases 

def distort_image(input_imgs, noise_factor=0.5): 

    noisy_imgs = input_imgs + noise_factor * np.random.normal(loc=0.0, scale=1.0, 

size=input_imgs.shape) 

    noisy_imgs = np.clip(noisy_imgs, 0., 1.) 

    return noisy_imgs 

# prepare distorted input data for training 

train_noisy_imgs = distort_image(train_imgs_data) 

# prepare distorted input data for evaluation 

test_noisy_imgs = distort_image(test_imgs_data) 

 
3. Noisy images illustration  

# plot distorted image example from training images 

image_id_to_plot = 0 

plt.imshow(tf.squeeze(train_noisy_imgs[image_id_to_plot]), cmap='Greys') 

plt.title("The number is: {}".format(train_labels[image_id_to_plot])) 

plt.show() 

# plot distorted image example from test images 

plt.imshow(tf.squeeze(test_noisy_imgs[image_id_to_plot]), cmap='Greys') 

plt.title("The number is: {}".format(test_labels[image_id_to_plot])) 

plt.show() 

plt.close() 

 
OUTPUT  

 

 
Figure 8: Noisy train and test MNIST images 
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Train and evaluate the model 

The network is ready to get trained. The number of epochs specified as 25 and batch size of 64, means the whole 

dataset will be fed to the network 25 times. We will be using the test data for validation. After 25 epochs we can 

see our training loss and validation loss is quite low which means our network is performing well.  

 

Training vs. validation loss plot 

loss plot drawn between training and validation data using the introduced utility function plot_losses(results).  

# funstion for train and val losses visualizations 

def plot_losses(results): 

    plt.plot(results.history['loss'], 'bo', label='Training loss') 

    plt.plot(results.history['val_loss'], 'r', label='Validation loss') 
    plt.title('Training and validation loss',fontsize=14) 

    plt.xlabel('Epochs ',fontsize=14) 

    plt.ylabel('Loss',fontsize=14) 

    plt.legend() 

    plt.show()  

    plt.close() 

 

# visualize train and val losses 

 

plot_losses(results) 

 

 
Figure 9: Training and validation losses 

 

It is evident from the loss plot that in the first 10 epochs, validation loss and training loss are both steadily 
decreasing. This training loss and the validation loss are also very close to each other. This means that our model 

has generalized well to unseen test data. We can further validate our results by observing the original, noisy and 

reconstruction of test images.  
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3. RESULTS 
 

 
Figure 10: Representation of MNIST images on different stages 

 

4. CONCLUSION 
 

In this research we developed new approach for implementing the Denoising Autoencoder. We implemented it 

on MNIST handwritten digits. Using this proposed model we can be able to reconstruct the images with good 
precision. Some parts of the programs also addressed. It is evident from the “Figure 9: Training and validation 

losses” plot; and then the reconstructed images in “Figure 10: Representation of MNIST images on different 

stages” that our proposed model is working well and is applicable novel approach for implementing Denoising 

Autoencoder 
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